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ABSTRACT 

The expresslon for the emanation rate due to recoil and to the dlffuslon of inert gas m 
pores 1s gven for a solid spherical body labelled by the appropriate parent nuchdes. This 
model describes a sohd wth radial cyhndncal pores of both uniform and general dlstnbutlon 
sizes The denved expressions descnbe the behavlour of mert gas release from porous solids 
durmg non-Isothermal treatment This new approach avoids the usual errors of quasl-lsother- 
mal approximation. 

INTRODUCTION 

Emanation thermal analysis (ETA) [1,2], in spite of its wide use, has 
lacked adequate theory. The most commonly used mathematical model 
based on the early work by Flugge and Zimens [3] has been proposed to 
describe the course of the release of inert gas from a compact spherical body 
under isothermal conditions. Its shortcommgs appear to be serious [4,5] in 
the case of markedly porous materials over moderate temperature ranges, 
especially under a substantial rate of linear heating. There appear to be two 
main reasons for this: (i) the major part of the emanation rate under such 
conditions is not due to the recoil of mert gas (en) or the diffusion through 
the solid (en) but is due to the fast diffusion through the pores (or); (ii) the 
use of the quasi-isothermal model in the case of ETA is too crude: the mam 
effects of ETA are probably brought about by the distortion of the steady 
state, the assumption of winch is crucial for the quasi-isothermal approxima- 
tion. 

The aim of this study is therefore to explore the possibilities of a more 
adequate theoretical model. We start with a rather simple case of a spherical 
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body with radial cyhndrical pores impregnated or otherwise labelled by a 
long-hved parent radionuclide (e.g., 228Th) Even m thrs case, not all neces- . 

sary physical mformation is available so that some assumptions have to be 
made. In the first part of this study we present the derivation of the model, 
m the second part, to appear later, its exploration by computer simulation. 

THEORY 

For a homogeneous spherical body of radius R, wtth NP pores of a 
uniform cylindrical shape of radius rr, and length 1, all pores should reach the 
outer surface in the radial direction (see Fig. 1). The body contains a 
long-lived parent radionuchde (e.g., 228Th) either impregnated on its outer as 

well as on its inner surface or distributed homogeneously in the solid, 
decaying to a daughter secondary nuclide (e.g., 224Ra) and subsequently to a 
radioactive inert gas (e.g., 220Rn) The recoil ranges of the secondary nuchde 

( 224Ra) and of the inert gas ( “‘Rn) in the solid are pR and pr, respectively, 

and the same in the phase of pores pk and pi, respectively. 
The emanation rate * from such a body can be expressed as the sum of 

the parts due to the recoil (~a), the diffusion through the pores (or) and the 
diffusion through the solid (E,,) 

E=ER+Zp+eD (1) 

The last term of eqn. (1) is negligible m some cases, for example, m inorgamc 
ionic crystals over a moderate temperature range. Therefore, to simplify the 
solutron, the diffusion term E,, will not be taken into account. 

Rn 

FIN 1 Scheme of the radon release by recoil and dlffuslon from a 
with **sTh and 224Ra parent nuclldes (for the symbolds see text) 

porous sohd gram labelled 

* Emanation rate IS the rate of release of mert gas from the sohd 
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Dlstrlbutlon of the secondary nuclrde and the creation function of inert gas rn 
pores 

The instant concentratron of the secondary nuclide m the volume element 
with its centre at the point x follows the differentral equation 

Sc,(x,t) 
= 

St 
A, jPR j2r l'=c,( r, cp, 6, t)p(r, cp, 9) drdcpd6- ARcR(x, t) 

0 0 0 

(2) 
where the origm of the polar coordinates IS at x, cr( r. cp, 9, t) IS the instant 
concentration of the parent nuchde, p(r, v, 9) is the probabihty that the 
atom emitted from the pomt (r, ‘p, 6) will reach the point x, and A, and AR 
are the decay constants of the parent and secondary nuclide, respecttvely. 

For a sufficiently large difference between AR and A,, we may assume 
the radioactive equtlibrium, i.e., Sc,( x, t)/St = 0. The concentratron cR( x, t) 

at the distance x from the pore wall is then 

where the geometrical factor x(x) (neglecting, for simplictty, the curvature 
of the pore wall and the slowmg-down of the recoil atoms by the pore 
medium) is 

for the surface impregnation by the parent nuchde and 

Fig. 2. Calculation scheme of the range of recoil atoms m the porous sohd (for the symbols 
see text). 
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x(4 = 1 (4b) 
for the homogeneous distribution of the parent isotope. 

The probability of emitting an atom by recoil above the pore wall from 
the depth x is (neglecting the curvature) 

Plx = 
27r(P, - x) _ Pr - x 

47TP,z P? 
(5) 

The probability pzx that the emitted atom will hit the pore wall agam is 
rather complicated even under the assumptions already made. As may be 
seen from Fig. 2, the range [ of the recoil atoms to be considered is 

where 5, is the length of the trajectory in the solid. Approxtmating the 
surface of eqn. (6) by a cone, the probability pzx is 

where 

The expression (7) does not, however, express the true probability that the 
emitted atom will be lost for the pore diffusion. There 1s clearly some 
probability that such an atom will escape again along its own trajectory by 
diffusion, which depends on the extent of the matrix disorder and on 
temperature, It therefore seems reasonable to make a correction to eqns. (7) 
in the followmg way 

p2x= (1-‘)‘[ I -p. exp( - WROI 

, where E, 1s an activation energy and p. is a phenomenological coefficient 
G 1. Under such assumptions the probability that the recoil atom will enter 
the pore is 

Px=Pd-P,x)= y{l -(I -$-+ -Pofw(-4/WI] (8) 

Consider a typical pore with rp << 1 and r,, < k,, k, being the free range of the 
atoms in the pore medium under given conditions. In such a case, the radial 
homogenization of the inert gas in the pore will be much faster than the 
longitudinal diffusion and the creation function c(T) of the inert gas in the 
pore can be considered to be radially independent 
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where A 1s a factor depending of the uruts of cr, bemg A = r;’ tf cr IS m 
surface units. From eqns. (3), (8) and (9) 

~(*)=A*,c,x(r)y[(l -:)-{l -:--$[I -7 ln(l -Y)]) 
r r 

X 11 --PO exd--%/W] 
1 

(10) 

where y = p Jpr. 

Pore permeabrhty and the dlffussron coefflclent of Inert gas drffussron m pores 

The salient fact on which our model IS mamly based IS the generally 
observed increase of the emanation rate followed by its rather sharp decrease 
in a temperature range mostly from 0.3 to 0.5 Tmeltlng. The simplest explana- 
tion of this is a sintering process by which the pores are gradually closed, 
decreasing their permeabihty to the diffusing inert gas. Assuming the vahdlty 
of the Knudsen expression for the diffusion coefficient 

D,(T) = /-- 
g T1/2r, (11) 

some expression IS required for r,(T), i.e., some reliable kmettcs of the 
sintering process. Unfortunately, there is no certainty in this field as yet (cf., 
ref. 6). Therefore, we shall proceed in the following way. 

Should the sintermg proceed either by evaporation-condensation, or by 
diffusion or by plastic flow, its rate will be proporttonal to the inner surface 
area of the pore and, m addition, it will depend on the pore radms. Thus, the 
simplest possible phenomenologrcal equatron of any rehabthty, descrtbmg 
the change of the pore volume VP, is 

- dV,/dt = kpSprp* 02) 

where k, is some rate constant with the usual exponential dependence on 
temperature (the exponent being formed by the acttvation energy of self-dtf- 
fusion and/or by the evaporation heat), SP is the mner surface of the pore 
and (Y is some exponent. Taking cr = 1, the following expression follows from 
eqn. (12) 

% KP --= 
dT yrP exp(-E,/RT) (13) 

where K is the linear heating rate and K, and Ep are the usual coefftclents of 
the Arrhemus function. From eqn. (13), the diffusion coefficient [see eqn. 
(ll)] takes the form 

D,(T) = rpo ET112 exp[ - ?L>p( -EJRT)dT] (14) 
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It can be readily seen that the value of eqn. (14) has a maximum, its location 
bemg 

T max = f- exp( EJRT) 
Q 

The appropriateness of eqn. (14) depends on the validity of eqn. (13) and of 
the correct value of cr. It will be seen, however, that the general conclusions 
of this study are open to a further improvement in this field. 

Emanatron rate cp 

To derive the expression for the part of the emanation rate caused by the 
pore diffusion, the corresponding equation of diffusion must be solved. 
Under the assumptions already made, the concentration of the inert gas in 
the pore must follow the differential equation 

Wr, x, t) 
+ sxz c(r, x, t) - Xc(r, x, t) + l(t) (15) I 

where X is the decay constant of the inert gas, DQ is the diffusion coefficient 
and l(t) IS the creation function of this gas. Considermg, however, the 
function [ to be independent of r (see earlier), both Sc/Sr and S2c/6r2 are 
vanishing and thus take the form 

WG tS 
at 

=D (t)s2c(xy t, -hc(x t)+l(t) 
Q 

6X2 
, 

with the boundary conditions 

c(x, 0) = cp(x) 

c(0, t) = 0 

Sc( I, t)/8x = 0 

the last of which precludes the divergmg behaviour 
reasonable to assume the steady state at the start of 
Sc(x, 0)/i& = 0; thus 

DQ to) 82cj;; O) - hc(x, 0) + l(O) = 0 (17) 

06) 

(lea) 
(16b) 
064 

of c(x, t). It seems 
the experiment, i.e., 

with the boundary condttions analogous to eqn. (16b,c). The solution to eqn. 
(17) is straightforward, giving 

sinh[ (I- x)/m] \ 
sinh[ $/a] 1 08) 

Returning to eqn. (16), the solution can be expected in the form 
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c(x, t) = u(x, t) + w(x, t) 
where u(x, t) is the solution to the homogeneous equation 

with the boundary conditions analogous to eqn. (16a, b, c), and w(x, t) 

corresponds to the equation 

swb, t) 
St 

= D(t) 82;;29 t, -Xw(x, t)+{(t) (21) 

with the first boundary condition 

w(x, 0) = 0 (2la) 

and the remaining two boundary conditions analogous to (16b, c). 
By the substitution 

u = u e-” 

and by the transformation 

T= b(t)dt 
/ 0 

eqn. (20) may be reduced to 

St.4 CV2u -=- 
67 6x2 

which, under given boundaries, has the solution 

n2r2 
u(x,t)=$ 2 exp --7 

n=O i ) i2 

which, after backward transformation, gives 

where 

and 

(22) 

(23) 

(26) 
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In a similar way, eqn. (21) can be reduced by transformations analogous to 
eqns. (22) and (23) to 

where 

((7-)=-$+eA’ 

The solution of eqn. (27) IS 

2(x, r,=f I? cos[P,(l- x)1 
n=O 

X oTt(x) exp J 7r2n2 
--(T-x) / 

I2 I :os[ &(/- s)]dsdx 
0 

After algebrarc manipulatrons, eqns. (19)-(29) give 
00 

n-0 

where a and fi,, are defined by eqn. (26a, b), respectively, and 

(27) 

(28) 

(30) 

and 

c.(t)=+ exp[-~JdD(v)dv]~S(s)exp[Xs+~~(u)du]ds (32) 

S(t) and D(t) being defined m our case by eqns. (10) and (14), respectively. 
From eqn (30), the emanation rate cp due to pore diffuston follows directly 

2 w4 t> = N ep = iVIpDp7rrp 
6x Q 

where NQ IS the number of uniform pores in the body. This expression can be 
readily generalized to the case of a distribution of pore radii: if P( r,.,) 1s some 
normalized distribution function, then 
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Emanation rate, cR 

The part of the emanation rate caused by the surface recoil depends on 
the outer surface of the body. Neglecting the correction due to the part of 
the surface which is occupied by the pores’ ends (assuming rt to be suffl-, 
ciently small) it follows 

CR = AR41rjRh r*cR( r, t)&)dr 
R,-p, 

where q(r) is [3] 

(35) 

q(r) = 
2prr-(RZ,-p;)+~2 

4PY 
(36) 

and cR(r, t) is, in analogy to eqn. (3) 

cR(r, t)= 
Arc* 
-x(r) x (37) 

R 

where, for a homogeneous distribution of the parent isotope, 

and, for the surface impregnation 

t37b) 

from the respective geometrical interpretations of probability. After alge- 
braic mampulations, the explicrt form of (35) IS 

+R,(l + $R2, + $R, + tPR)] 

-Pr(3P,2 + bRPr + Pi + 2)) 

(384 

for the homogeneous distnbution, and 

for the non-homogeneous distribution, resulting from surface tmpregnatron 
labelling. Under these assumptions, CR is clearly independent of temperature 
and so this part forms a constant increment of the total emanation rate. 



184 

CONCLUSIONS 

From eqn. (33) the temperature-dependent part of the emanation rate 
under the linear heating rate K IS, for our model 

N m312r3 
c,(T)= ’ l  ‘Oexp [ - ++ 3&J,)] 2 (n + t&,,(T) + c,(T)] 

n=O 

(39) 

where 

1) exp( - %7)(40) 

and 

c,(T) =z K1exp[ - yr]/>(r) exp[Xs+$T]ds (41) 

cy and & are defined by eqn. (26a and b), respectively. c(T) 1s defined by 
eqn. (10) and 7 is 

and JT represents the usual temperature integral 

JT = 
/ ( 

Texp - E,/RT)dT 
T, 

(42) 

The Fourier series in eqn. (39) converges absolutely so that only some terms 
need to be computed. Whereas good approximations for JT have been found, 
the integral in eqn. (41) has to be obtained by some numerical method. Some 
features of its behavlour will be shown in the second part of this study. 

Finally, we note that the inert gas diffusion in the solid in some cases 
cannot be neglected. The complex model of the porous solid which also 
includes inert gas diffusion in the solid will be treated in a paper to follow. 
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